Paramagnetic Liquids: The Preparation and Characterisation of the Thermally Stable Radical ButCNSNS and its Quantitative Photochemically Symmetry Allowed Rearrangement to a Second Stable Radical ButCNSSN-

Wendell V. F. Brooks,^a Neil Burford,^a Jack Passmore,*a Melbourne J. Schriver,^a and Leslie H. Sutcliffe^b

^a*Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E2* **^b***Department of Chemistry, Royal Holloway and Bedford New College (University of London), Egham, Surrey W20 OEX, U.K.*

The new thermally stable paramagnetic liquid 5-t-butyl-l,3,2,4-dithiadiazolyI **has** been isolated in the dark and quantitatively photochemically isomerised to the paramagnetic liquid 5-t-butyl-2,3,1,4-dithiadiazolyl (non-systematic numbering for ease of comparison).

Thermally stable, neutral, free-radical, non-metal compounds can be categorised by the state of lowest energy in which they remain substantially paramagnetic. (i) Paramagnetic solids: \dagger radicals which are paramagnetic in all states. These include the sterically hindered radicals such as diphenylpicrylhydrazyl $(DPPH),³ (C₆Cl₅)₃C,⁴$ and the non-sterically hindered O₂ and $ClO₂$.⁵ (ii) Paramagnetic liquids: radicals which are diamagnetic dimers in the solid state but are extensively dissociated upon melting, $e.g.$ Bu^t₂NO₁⁶ (CF₃)₂NO₁⁷ and $CF₃CSNSCCF₃$.⁸ (iii) Paramagnetic gases: radicals which are

largely dimeric in the condensed phases and only extensively dissociated in the gas phase, $e.g. NO⁹ NO₂.⁵$

Compounds of type (ii) are rare. However, we have recently reported the first example of a C-S-N heterocyclic paramagnetic liquid **(l),** which is not sterically restricted from dimerising.8 This followed Sutcliffe's initial discovery of the high stability of radicals of this nature in solution and their reluctance to dimerise. **10** We now report the preparation, isolation, and characterisation of two more paramagnetic liquids, **5-t-butyl-l,3,2,4-dithiadiazolyl (2a)** and 5-butyl-2,3,1,4-dithiadiazolyl **(3a).**

A variety of derivatives of **(2)** $(R = CH_3, CF_3, I)^{11,12}$ and **(3)** $(R = CH₃,¹² CF₃,¹³ I, ¹² Ph¹⁴)$ have been previously reported.

t **There are a number of examples of ionic paramagnetic solids,** *e.g.* salts containing O_2^+ ,¹ O_2^- ,¹ I_2^+ (Sb₂F₁₁⁻),¹ $C_6F_6^+$.²

However, compounds **(2a)** and **(3a),** containing the t-butyl group, have unusual properties. For example, **(3a)** has an uncharacteristically low melting point, for this class of disulphides, which has allowed the identification of **(3a)** as a paramagnetic liquid. In addition, **(2a)** is thermally stable with respect to isomerisation¹² to (3a). On this basis, we have discovered that the facile quantitative isomerisation¹² is 'thermally symmetry forbidden' and 'photochemically symmetry allowed.'l5 **But(%%&AsF6** (3.27 mmol) (prepared by the published method^{11,12}) reacted with SbPh₃ (2.25 mmol) and $NMe₄Cl$ (5.51 mmol) in $SO₂$ (7.19 g) for 10 min to form a black-purple solution (all manipulations were performed in the dark). The volatile products were fractionated through a series of U-tube traps at -10 and -196 °C under a dynamic vacuum. The brown-black liquid collected at -10° C was identified as compound $(2a)$ $(2.86 \text{ mmol}, 87\% , \text{m.p. } 0 - 1 \degree \text{C})$, by i.r. and e.s.r. spectroscopy ($g = 2.0071$, $a^{N2} = 1.09$ mT, a^{N4}) $= 0.06$ mT; cf. other derivatives),¹² and magnetic susceptibility. The pure brown liquid was left at room temperature exposed to normal room light for *5* days resulting in a colour change to a red-purple liquid which was purified by fractional distillation (as above) to give pure compound **(3a)** [2.58 mmol, 90% based on (2), m.p. 20-21 °C]. Compound (3a) was characterised by i.r. and e.s.r. spectroscopy $(g = 2.0121, a^N =$ 0.52 mT; cf. other derivatives¹²), elemental analysis, and magnetic susceptibility. Unlike $(2; R = CH_3)$ which could only be isolated in small quantities, at low temperature,¹² (2a) can be stored in the dark at room temperature for at least 20 h without any observable (e.s.r.) rearrangement to **(3a).** In CFCl₃ solution $(2; R = CH_3)$ isomerises almost completely within a week when exposed to room light. However, in the dark minimal ($\leq 5\%$) isomerisation is observed after a month. Compound **(2a)** appears to be indefinitely stable in solution when stored in the dark.

The preparation and purification of relatively large quantities of **(2)** now provides a means for the ready exploration of the chemistry of this heterocyclic framework. Moreover, the controlled isomerisation of **(2)** allows quantitative synthesis of a wide variety of derivatives of **(3).** The transformation of one radical species into another in a quantitative fashion is unprecedented, and is particularly surprising in view of the kinetic and thermodynamic instability associated with free radicals. **A** concerted process is implied, and our postulated head-to-tail π^* - π^* dimer intermediate $(A)^{12}$ is supported by the X-ray crystal structure of the related dithiazolyl compound **(4),** showing the same conformation *(59.8* The centre of symmetry, *i*, existing in the dimer structure (A) and the π^* - π^* dimer structure of the product disulphide **(3),** (B), will be retained throughout the concerted rearrangement. Therefore we have examined the electronic structure of the hypothetical hydrogen derivatives of **(A)** and **(B)** (CNDO). Of the 27 occupied MOs (valence electrons only), **(A)** has 14 that are symmetric (8) with respect to *i,* while **(B)** has only 13 MOs having g symmetry *(i.e.* **14** occupied MOs have u symmetry). Consequently, correlation of the MOs of **(A)** and (B) with respect to i involves a cross-over correlation between an occupied MO of **(A)** and an unoccupied MO of (B). This renders the process 'thermally symmetry forbidden' and 'photochemically symmetry allowed.'15 While many of the

Table 1. Magnetic susceptibility values^a for $CF_3CSNSCCF_3$ (1) ButCNSNS (2a), and ButCNSSN (3a) in the pure liquid state and at infinite dilution.

a 10% error associated with all measurements. **b** Obtained by extrapolation.⁸ c Assumed to be the same value as observed for (3a).

occupied antibonding $\pi-\pi$ interactions of (A) correlate with occupied low-lying weak *o** **S-S** MOs of **(B),** the antibonding combination of the SOMO-1‡ MO of (2), illustrated in (6), correlates with a high energy unoccupied σ^* S-S MO of (B). Therefore, as the rearrangement proceeds and the new disulphide bonds are formed, the energy of **(6)** increases sharply owing to the large contribution at the sulphur centres in the SOMO-1. It is a balance of the $\pi-\pi$ bonding MOs and an antibonding contribution related to **(6)** that is responsible for the long S-S dimer bonds observed in the solid state structures of **(3)** $(R = CF_3, 13 Ph14)$, described by Gleiter as a 4-centre 6e π - π interaction.¹⁶

The magnetic moments of compounds **(2a)** and **(3a)** as liquids at 20 °C were determined by the Gouy method¹⁷ using $Ni(en)_{3}S_{2}O_{3}$ (en = ethylenediamine) as a standard. The observed magnetic susceptibilities are compared with that of **(1)** in Table 1. Like **(1) (3a)** is diamagnetic in the solid state.

^{\$} SOMO-1: n-type MO of **(2)** next lower in energy *to* the SOMO.

Table 2. $\Delta H_{\text{dimension}}$ values for derivatives of (3) in CFCl₃ obtained by quantitative e.s.r. spectroscopy.

Compound (3),	ΔH_{cl}	
	kJ mol ⁻¹	M.p., t/°C
Pha	$-37 + 2$	c
CF ₃ b	$-37 + 3$	37
But b	-31 ± 10	$20 - 21$

^aRef. 19. This work. *c* Solid at room temperature.

However, both **(2a)** and **(3)** are substantially paramagnetic as liquids indicating that the liquid consists largely of monomer units. Variable temperature $(5-362 \text{ K})$ magnetic susceptibility measurements¹⁸ on a pure sample of $(3a)$ showed χ_g to be essentially independent of temperature in the liquid range. Variable temperature e. s.r. measurements on liquid samples of pure **(1)** (293-357 K), **(3a)** (293-361 **K),** and **(3;** R = $CF₃$)§ (303—341 K) in capillaries, also showed no change in the signal integration with change in temperature. Therefore it appears that the low μ_{eff} values observed are not due to a monomer/dimer equilibrium. It is conceivable that the values are less than those expected for one electron per molecule (obtained by extrapolation from solution measurements to be 1.96 μ_B) due to some spin-pairing mechanism between monomers, without involving dimer or oligomer formation. The high percentage of monomer implies a positive ΔG° _d value for the dimerisation process at room temperature, and consequently a small ΔH° ^d. In fact, ΔH° ^d for (1) is zero or positive in CFC13 solution. By comparison all derivatives of **(3)** have substantial ΔH° _d values (Table 2), consistent with compounds **(3)** $(R = CF_3, Ph, or CH_3)$ being dimeric in the solid state at room temperature. Therefore the unique 'paramagnetic liquid' nature of **(3a)** and **(3; R** = CF_3) is likely to be due to a large ΔS° value and all derivatives of (1), (2), and **(3)** are potential 'paramagnetic liquids. '

The existence of **(l), (2a),** and **(3a)** as 'paramagnetic liquids' at room temperature depends on the following. (i) The stability of the 7π heterocyclic radical monomer with respect to chemical decomposition. (ii) The reluctance of the π^* - π^* dimer to adjust to a conventionally a-bonded N-N or **S+-S+** alternative [for discussion with respect to (i) see ref. 81. (iii) **A** weak π^* - π^* dimer bond. The π^* - π^* interactions have been used to describe dimerisation of the radical ions in $(S_3N_2^+)_2$,²⁰ $(C_2F_5SeSeC_2F_5+)_{2}$,²¹ I₄²⁺,²² S₂O₄²⁻,²³ and Se₂I₄²⁺,²³ and the unusual structure of $S_2I_4^{2+}$.²⁴ It is also likely to be responsible for the dimerisation of NO in the solid state,⁵ the dimerisation of those nitroxides that are diamagnetic in the solid state *(cf.* Frémy's salt¹), and the cross-ring interactions in S_8^{2+} , S_8^{2+} , S_8^{2+} , S_8^{2+} S_4N_4 ,²⁶ and related compounds. It is therefore an important class of bonding arrangement. Both the importance, and subtle nature of these weak π^* - π^* interactions, is further illustrated in a new class of materials, the 'paramagnetic liquids.'

§ Compound (3; $R = CF_3$) is reported by Mews to be paramagnetic as a liquid, however, the data and degree of paramagnetism are not discussed. 13

We thank **N.S.E.R.C.** (Strategic Grant) for financial support and a graduate scholarship **(M.** J. **S.),** Dr. F. Grein for stimulating discussions, Mr. Simon Parsons of Durham University, U.K., for performing a portion of the experimental work, and Dr. C. Mailer of the Physics Department, University of New Brunswick, for the use of the e.s.r. spectrometer.

Received, 1st August 1986; Corn. 1102

References

- 1 A. F. Wells, 'Structural Inorganic Chemistry,' Clarendon Press, Oxford, 1984.
- 2 T. J. Richardson, F. L. Tanzella, and N. Bartlett, J. *Am. Chem.* **SOC.,** 1986, 108,4937.
- 3 S. Goldschmidt and K. Benn, *Ber. Dtsch. Chem. Ges.,* 1922, *55,* 628.
- 4 M. Ballester, *Acc. Chem. Res.,* 1985, 18, 380.
- 5 F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' Wiley, New York, 1980.
- 6 A. K. Hoffmannand A. T. Henderson,J. *Am. Chem.* **SOC.,** 1961, *83,* 4671.
- 7 P. M. Spaziante, MTP International Review of Science, Inorganic Chemistry, 1972, vol. 3, p. 141.
- 8 E. G. Awere, N. Burford, C. Mailer, J. Passmore, M. J. Schriver, P. S. White, A. J. Banister, H. Oberhammer, and L. H. Sutcliffe, J. *Chem. SOC., Chem. Commun.,* 1986, preceding communication.
- 9 A. L. Smith and H. L. Johnston, *J. Am. Chem. SOC.,* 1952, **74,** 4696.
- 10 S. A. Fairhurst, R. S. Pilkington, and L. H. Sutcliffe, J. *Chem. SOC., Faraday Trans. 1,* 1983,79, 925.
- 11 G. K. MacLean, J. Passmore, M. N. S. Rao, M. J. Schriver, P. S. White, D. Bethell, R. S. Pilkington, and L. H. Sutcliffe, J. *Chem. SOC., Dalton Trans.,* 1985, 1405.
- 12 N. Burford, J. Passmore, and M. J. Schriver, J. *Chem. SOC., Chem. Commun.,* 1986, 140.
- 13 H.-U. Hofs, J. W. Bats, R. Gleiter, G. Hartmann, R. Mews, M. Eckert-Maksic, H. Oberhammer, and G. M. Sheldrick, *Chem. Ber.,* 1985, 118, 3781.
- 14 A. Vegas, A. Perez-Salazar, A. J. Banister, and R. G. Hey, J. *Chem.* **SOC.,** *Dalton Trans.,* 1980, 1812.
- 15 R. B. Woodward and R. Hoffmann, 'The Conservation of Orbital Symmetry,' Academic Press, 1970.
- 16 R. Gleiter, R. Bartetzko, and P. Hoffmann, *2. Naturforsch. Teil B,* 1980,35, 1166.
- 17 W. L. Jolly, 'The Synthesis and Characterisation of Inorganic Compounds,' Prentice-Hall, Inc., 1970, p. 369.
- 18 R. *C.* Haddon, personal communication.
- 19 S. A. Fairhurst, K. M. Johnson, L. H. Sutcliffe, K. F. Preston, A. J. Banister, Z. V. Hauptman, and J. Passmore, J. *Chem. SOC., Dalton Trans.,* 1986, 1465.
- 20 R. J. Gillespie, J. P. Kent, and J. F. Sawyer, *Znorg. Chem.,* 1984, *20,* 3784.
- 21 J. Passmore, E. K. Richardson, and P. Taylor, J. *Chem. SOC., Dalton Trans.,* 1976, 1006.
- 22 R. J. Gillespie, R. Kapoor, R. Faggiani, C. J. Lock, M. Murchie, and J. Passmore, J. *Chem. SOC., Chem. Commun.,* 1983, 8.
- W. A. S. Nandana, J. Passmore, P. S. White, and C. M. Wong, J. *Chem. SOC., Chem. Commun.,* 1982, 1098.
- 24 J. Passmore, G. Sutherland, T. Whidden, and P. S. White, J. *Chem. SOC., Chem. Commun.,* 1980,289.
- 25 *R.* J. Gillespie and J. Passmore, *Adv. Znorg. Chem. Radiochem.,* 1975, 17, 49.
- 26 R. Gleiter, *Angew. Chem., Int. Ed. Engl.,* 1981, **20,** 444.